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Abstract
The study of superconductivity in correlated systems is an exciting area of condensed matter
physics. In this paper we consider superconducting ground states in systems described by
two-band models with different effective masses. These two bands are coupled through an
effective hybridization that can be directly tuned by pressure. We consider the cases of s-wave
superconductivity associated with the electrons in a narrow band and also with inter-band
pairing. To study the system in the strong coupling regime we introduce the s-wave scattering
length as , and obtain the superconducting order parameters and the chemical potential as
functions of the interaction strength 1/kFas along the BCS–BEC crossover at T = 0. Finally,
we discuss the phase diagram of this model as a function of external pressure and how our
results can be applied for two-band systems as Fe pnictides or heavy fermions. The main result
of this study is the occurrence of a superconducting quantum critical point (SQCP) in this
two-band model.

1. Introduction

Superconductivity in the strong coupling regime has been
widely studied through simple models, such as in a gas of
interacting fermions [1, 2]. These studies become particularly
interesting when they include the crossover to this regime
from weak coupling BCS superconductivity. In this case
one finds a continuous evolution from large Cooper pairs
to Bose–Einstein condensation of bound fermions, as the
strength of the interaction increases. Although this problem
was studied many years ago [2, 3], it has raised new interest
as possibly being relevant to understanding high temperature
superconductors [4, 5]. In the last decade important progress
has been made in understanding the smooth evolution of the
transition temperatures [6], the description of the broken-
symmetry states along the BCS–BEC crossover [7], and the
thermodynamics along the BCS–BEC crossover [9] including
the thermodynamic properties of d-wave superconductors [8].
More recently, studies of phase transitions in collections of
cold atoms [10] has further increased the interest in this

problem, as the weak to strong coupling crossover can be
realized experimentally in these systems [2].

The crossover from weak coupling superconductivity to
Bose–Einstein condensation occurs as a smooth evolution
between two very different physical systems. In conventional
BCS superconductors there is a critical temperature Tc where
superconductivity is suppressed due to thermal breakdown
of Cooper pairs. In the case of a Bose superconductor
there are two characteristic temperatures, one is the critical
temperature, which in the extreme Bose regime does not
depend on the coupling strength and the other, significantly
higher, is associated with thermal pair decomposition.

In this work we propose to study the physics of the
BCS–BEC crossover and its relevance for condensed matter
systems, focusing on a multi-band model, which might be
more appropriate for studying systems as Fe pnictides or heavy
fermions. We consider a two-band model where the quasi-
particles have different effective masses. One is a narrow band
of heavy quasi-particles and another a wide band associated
with uncorrelated conduction electrons. This model can be
used to describe cerium (Ce), ytterbium (Yb), and uranium (U)
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compounds, where the narrow band is formed by unfilled shells
of f-electrons and the wide band describes s, p, or d quasi-
particles. For systems such as the Fe pnictides, the narrow band
is formed by d-electrons.

We study for completeness a two-band model with intra-
band and inter-band attractive interactions and a hybridization
term. The origins of these interactions are left unspecified and
their relative importance can be varied from system to system.
The reason for including hybridization explicitly is that this
can be easily tuned by external pressure. Consequently, it
can be used as a control parameter to explore the phase
diagram of these systems, in particular the existence of
superconductor quantum critical points (SQCP) separating
normal and superconducting phases. The present model can
also be used to describe superconducting states [11, 12] with
different types of symmetries [13] in a wide region of the
parameter space.

The experimental studies of the solid state systems that
we are interested in here differ significantly from those on
cold atom systems. In the latter it is possible to control the
strength of the interactions [2] while in the former this is
not possible in principle. In the solid state systems the most
common control parameters are doping, pressure, or magnetic
field. In particular, the ratio of the hybridization over the
bandwidth can be tuned by external pressure. While it is
possible that the strength of the attractive interactions depends
on hybridization, its most important effect is to transfer
quasi-particles between the different renormalized bands.
For intra-band superconductivity, which generally dominates
in metals [14], this weakens the effect of the attractive
interactions and eventually destroys superconductivity. In
some sense the effect we study by changing V has features
similar to doping the system, if we could exclude the effect
of disorder.

For the purpose of characterizing the superconducting
phase, we use the equations of motion method to obtain both
normal and anomalous Green functions at zero temperature.
We show that in the case of intra-band interactions, the
transition from the superconductor to the normal state as
hybridization increases is continuous in both weak and strong
coupling regimes. The hybridization shifts the chemical
potential in the BCS limit, while in the strong coupling
regime both the gap and the chemical potential converge to
hybridization-independent results. For inter-band attractive
interactions we find that the superconductor–normal transition
driven by hybridization (pressure) is discontinuous all along
the crossover from weak to strong coupling.

The paper is organized as follows: in section 2 we
introduce the model and obtain the equations of motion
for the Green functions. These are solved yielding all the
important propagators. From these propagators we extract
the relevant correlation functions, namely the superconductor
order parameter and the number density. The latter is essential
if we want to investigate the weak to strong coupling crossover.
In section 3 we discuss the effects of hybridization on
superconductivity in both weak and strong coupling regimes.
For this purpose we have to introduce an s-wave scattering
length [7]. We discuss the effects of hybridization on inter-
band and intra-band s-wave superconductivity [15] all along

the BCS–BEC crossover. We obtain for both cases the
critical value of hybridization Vc, which is required to destroy
superconductivity at zero temperature. This value increases
smoothly all along with the strength of the interaction.

2. The model and the Green functions

The two-band model Hamiltonian with hybridization is given
by,

H =
∑

k,σ

εs
kc†

k,σ ck,σ +
∑

k,σ

ε
f

k f †
k,σ fk,σ

+ V
∑

iσ

(c†
iσ fiσ + f †

iσ ciσ ) − U
∑

iσ

nc
iσ n f

i−σ

−
∑

i jσ

Gi j n
f
iσ n f

j−σ − μN (1)

where V is the hybridization term, U is a local inter-
band attraction, Gi j is an intersite f–f attraction, and N
the total number of lattice sites. The two-band model
is used to describe a large variety of systems, such as
transition metals [19], cuprate compounds [20], excitonic
correlations [21], asymmetric superconductivity [22], heavy
fermions [18], and the recently discovered family of
superconductors based on FeAs [23]. In fact, a complete
description requires us to include local repulsion between f-
electrons [24]; however, our purpose here is to point out
that the BEC–BCS crossover is different in a two-band case,
compared with the one-band case, and this is the reason
why we do not take into account explicitly this local f–f
repulsion. The parameters in equation (1) should be considered
as effective parameters, such as, for example, those obtained
for the Kondo lattice in the slave boson method [17] or as
in [16].

With the use of a BCS decoupling in equation (1), and
performing a Fourier transformation, we obtain the normal and
anomalous Green functions for the electrons of the two bands:

〈〈 fkσ ; f †
kσ 〉〉 = 1

2π
[(ω2 − εs

k
2
)(ω + ε

f
k ) − �2

cf(ω + εs
k)

− V 2(ω − εs
k)]P(ω)−1, (2)

〈〈ckσ ; c†
kσ 〉〉 = 1

2π
[(ω2 − ε

f 2
k )(ω + εs

k) − �2
cf(ω + ε

f
k )

− V 2(ω − ε
f

k ) − �2
k(ω + εs

k)]P(ω)−1, (3)

〈〈 f †
−k−σ ; c†

kσ 〉〉 = 1

2π
[�3

cf + V �k(ω + εs
k) − �cfV

2

− �cf(ω + εs
k)(ω − ε

f
k )]P(ω)−1, (4)

〈〈 f †
−k−σ ; f †

kσ 〉〉 = 1

2π
[2�cfωV − �k(ω

2 − εs
k

2
)]P(ω)−1, (5)

with

P(ω) = ω4 − [εs
k

2 + ε
f 2

k + 2(�2
cf + V 2) + �2

k]ω2

+ {[εs
kε

f
k − (�2

cf − V 2)] + �2
kε

s
k

2}, (6)

where �cf and �k are respectively the inter- and intra-
band superconductor order parameters, defined as �cf =
U〈c†

iσ f †
i−σ 〉 and �k = ∑′

k G(k, k ′)〈 f †
k′σ f †

−k′−σ 〉, where
G(k, k ′) is defined in equation (10) below. The roots of

2



J. Phys.: Condens. Matter 22 (2010) 075701 F Dinóla Neto et al

the polynomial P(ω) determine the excitation energies of the
system,

ω1,2 =
√

A(k) ± √
B(k), (7)

with

A(k) = εs
k

2 + ε
f 2

k + 2(�2
cf + V 2) + �2

k

2

and

B(k) =
[

�2
k − (εs

k
2 − ε

f 2
k )

2

]2

+ V 2[(εs
k + ε

f
k )2 + �2

k]

+ �2
cf[(εs

k − ε
f

k )
2 + �2

k + 4V 2].
In the following, we assume that the bands are homotetic,
i.e. ε

f
k = αεs

k , εs
k = k2/2m − μ are the energies of single

particle excitations. The bandwidths of the s and f bands are
W and D respectively, where D = αW . The quantity α < 1
is the ratio of the effective masses of the quasi-particles in the
two bands. The total number of electrons N = nf + nc is taken
as fixed.

3. Hybridization effects

Next, we obtain the number equation and the self-consistent
gap equations for both the intra-band and inter-band order
parameters. The T = 0 number equation is obtained from
the propagators (2) and (3). It is given by,

N =
∑

k

{
1 − 1

2(ω2
1 − ω2

2)

[
(εs

k + ε
f

k )(ω2
1 − �2

cf + V 2)

ω1

− εs
k[�2

k + ε
f
k (ε

f
k + εs

k)]
ω1

− (εs
k + ε

f
k )(ω2

2 − �2
cf + V 2)

ω2

+ εs
k[�2

k + ε
f
k (ε

f
k + εs

k)]
ω2

]}
(8)

where ω1,2 are the excitation energies of the system given
by (7). Changing the sum over k to an integral, we have,

N = k3
F

4π2

∫ ∞

−μ

√
(x + μ)

{
1 − x

2(ω2
1 − ω2

2)

×
[
(ω2

1 − �
2
cf + V

2 − αx2)(1 + α) − �
2
k

ω1

− (ω2
2 − �

2
cf + V

2 − αx2)(1 + α) − �
2
k

ω2

]}
dx (9)

where x is a dimensionless variable. The over-bar in a given
quantity means that it is renormalized by the Fermi energy EF.
Then, we obtain the gap equations to be solved with the number
equation. These will yield the behavior of the system along
the crossover from the weak coupling to the strong coupling
regime. In the following we consider independently the cases
of intra- and inter-band interactions.

3.1. Intra-band case

For intra-band pairing, we follow Nozières et al [3] and
Duncan et al [8] and consider the interaction G being given
by a separable potential

G(k, k ′) = G0

{(1 + k2/k2
0)(1 + k ′2/k2

0)}1/2
. (10)

In fact, in a lattice, the potential should be a function of k − k′;
V (k − k′) can be written as a sum of several components
with s, p, d . . . symmetries as: V (k − k′) = Vs(k, k′) +
Vp(k, k′) + Vd(k, k′) + · · · [25]. Here we are interested in
extended s-wave superconductivity, thus only Vs(k, k′) couples
to the superconducting s-order parameter. Moreover, in a cubic
bipartite lattice Vs(k, k′) is separable, as shown by Bastide et al
[24].

If the potential takes the form of equation (12), the intra-
band superconductor order parameter is given by,

�k = �0

(1 + k2/k2
0)

1/2
, (11)

where k0 is related to the range R0 of the interaction (R0 =
1/k0). The coupling strength G0 and the intra-band gap
amplitude �0 are constants. Finally, the gap equation is
obtained from the propagator (5), and at T = 0 we have,

1

G0
= −

∑

k

1

2(ω2
1 − ω2

2)(1 + k2/k2
0)

[
(ω2

1 − εs
k

2)

ω1

− (ω2
2 − εs

k
2)

ω2

]
. (12)

A conventional BCS superconductor has a natural cutoff
to solve this equation: in this case the attractive interaction
is mediated by phonons, and this attraction can be limited to
energies smaller than the Debye energy (h̄ωD) close to EF.
In the strong coupling regime this cutoff cannot be accepted
since in this situation all electrons participate in the interaction,
including those outside of the Debye energy shell. In this case
the integral for the gap becomes divergent. The solution to
eliminate this divergence is to renormalize the gap equation
by introducing the s-wave scattering length as to describe the
system interaction. as can be positive or negative [26]. For
�cf = 0, the intra-band gap equation is given by,

− 1

kFas
= 1

π

∫ ∞

−μ

1

[1 + (x + μ)/E0]
×

{√
(x + μ)

(ω2
1 − ω2

2)

[
(ω2

1 − x2)

ω1

− (ω2
2 − x2)

ω2

]
− 1

α
√

(x + μ)

}
dx . (13)

Now, 1/kFas plays the role of a dimensionless coupling
constant, where kF = √

2m EF is the Fermi wave vector. When
1/kFas → −∞ one obtains the weak coupling regime (BCS
limit), while 1/kFas → +∞ gives the strong coupling limit
(BEC limit) [26]. E0 is the energy related to the momentum
E0 = k2

0/2m and the over-bar on a given quantity means that
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Figure 1. The zero temperature intra-band gap as a function of the
interaction strength (see text) for different values of the ratio of the
effective masses α.

it is normalized by EF. The gap equation (13) must be solved
simultaneously with the number equation (9).

Figure 1 shows the gap solutions for several values of the
ratio of the effective masses α. One can see that as this ratio
becomes very small, i.e. the quasi-particles in the narrow band
become too heavy, the crossover to strong coupling only occurs
for very large values of the interaction. Let us consider the case
of α = 0.5 where the BCS–BEC crossover occurs for moderate
values of the coupling strength. We consider the dilute case,
i.e. the case where the inter-particle spacing is larger than the
interaction range, such that, (k0/kF)

2 � 1. This condition
can also be expressed in terms of the characteristic energies,
the ratio between E0 and EF. We choose E0 = 500, the
same order of magnitude as that considered by Duncan et al
[8]. In the BCS limit and for V = 0, the chemical potential
practically does not differ from the Fermi energy EF, and the
superconducting gap is much smaller than EF as expected.
With increasing coupling strength the pairs become more
tightly bound, the momentum distribution broadens [2, 7], and
μ decreases, as shown in figure 2. The effect of increasing
hybridization is also shown in this figure. For larger V , the
chemical potential practically remains constant in the weak
coupling regime although it is reduced with respect to EF for all
values of V > 0. We can see in figure 2 that the crossover from
the BCS to the BEC regime remains smooth as hybridization
increases. The main effect of increasing hybridization is to
shift the crossover between these two regimes to stronger
values of the interaction.

Figures 3 and 4 show the dispersion relations of the quasi-
particle excitations above the superconducting ground state for
the weak and strong coupling regimes, respectively. In the
former case the dispersions are typical of those found in multi-
band superconductors with a dip close to the Fermi wave vector
of the band of the electrons with attractive interactions [22].

Figure 2. The zero temperature intra-band gap �0, and chemical
potential μ as functions of the interaction strength 1/kFas , for several
values of hybridization V . The mass ratio is fixed at α = 0.5. For
V 	= 0, aS must be larger than a critical value for superconductivity
to appear (see figure 6).

Figure 3. Dispersion relation of the excitations in the weak coupling
regime [22].

In the strong coupling case shown in figure 4 the dispersion
relations are similar to those of Bose particles with a quadratic
dispersion. The gap at k = 0 is just the dissociation energy of
the bosons formed by the strongly coupled pairs of fermionic
quasi-particles.

It is interesting to point out that when either intra- or inter-
band interactions vanish, superconducting correlations of the
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Figure 4. The dispersion relation in the strong coupling regime. The
dispersions are free particle-like with a gap related to the dissociation
energy.

other type are never present in the system. This occurs in spite
the fact that the anomalous Green functions involving quasi-
particles of the same or different types are always different
from zero: for example, if the intra-band gap is different
from zero, also the inter-band anomalous Green function is
different from zero, due to hybridization, but integration of
this anomalous Green function leads to a vanishing inter-band
order parameter. Then, both interactions should be present for
the coupled inter- and intra-band problem to appear in its full
complexity [22].

3.2. Inter-band case

For the inter-band case, the gap equation is obtained from the
propagator equation (4), and at T = 0 and �0 = 0 we find,

− 1

U
=

∑

k

1

2(ω2
1 − ω2

2)

[
(ω2

1 − εs
kε

f
k − �2

cf + V 2)

ω1

− (ω2
2 − εs

kε
f
k − �2

cf + V 2)

ω2

]
. (14)

Following the same procedure used to renormalize the intra-
band gap equation we obtain equation (14) as

− 1

kFas
= 1

π

∫ ∞

−μ

{√
(x + μ)

(ω2
1 − ω2

2)

[
(ω2

1 − αx2 − �
2
cf + V

2
)

ω1

− (ω2
2 − αx2 − �

2
cf + V

2
)

ω2

]

− 2

(1 + α)
√

(x + μ)

}
dx . (15)

The gap equation (15) should be solved simultaneously
with the number equation (9) as was done previously in the
intra-band case. In figure 5 we show the results of the

Figure 5. The inter-band gap �cf and the chemical potential μ at
T = 0 as functions of the dimensionless coupling 1/kFas for several
values of hybridization V . The ratio of the masses α = 0.5.

numerical solution for the inter-band problem. Differently
from the intra-band case, the zero temperature normal–
superconductor transition induced by increasing the strength
of the interaction in the presence of hybridization (V > 0) is
now discontinuous or first order, even in the strong coupling
limit. For V/EF > 0.4 and α = 0.5 the transition already
occurs in the strong coupling region, i.e. there is a discontinuity
of the gap value, when superconductivity appears. Then,
in the inter-band case for V > 0 the system does not
present a smooth evolution as obtained in the intra-band case.
This is the most significant difference between both kinds
of superconductivity. Note, however, that in both cases,
hybridization acts to the detriment of superconductivity. For a
fixed interaction, increasing the ratio V/EF eventually destroys
superconductivity, either continuously (intra-band case) or
discontinuously in the inter-band case. In figure 6 we plot
the zero temperature critical values of hybridization Vc which
destroy superconductivity, for both cases of intra- and inter-
band interactions, as functions of the interaction strength
1/kFas . It is clear that to suppress inter-band superconductivity
a smaller value of hybridization is required than in the intra-
band case, even in the strong coupling limit. Thus, the inter-
band case seems to be a less stable form of superconductivity.
The inter-band case with V = 0 and α 	= 1 has been treated by
Baranov et al [27]. In this case there is no SQCP.

4. Conclusions

In the present work, we have studied the crossover between the
weak and strong coupling limits of superconductivity in a two-
band model in a mean field approximation in the presence of
hybridization. As shown by Nozières and Schmitt-Rink [3] this
approximation describes quite accurately this crossover. We
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Figure 6. The critical values of the hybridization Vc at T = 0 as
functions of the coupling strength for the intra-band and inter-band
superconductivity. The ratio of the masses α = 0.5.

obtain the normal and anomalous Green functions which are
then used to determine the gap and number equations. These
equations are then solved self-consistently. In order to treat
the strong coupling limit and renormalize both the gap and
number equations, we have to introduce scattering lengths for
the two-band problem. For V > 0 in the intra-band case
and for a dilute system we obtain a smooth evolution between
weak and strong coupling limits. In the inter-band case we find
that the normal–superconductor transition is first order both for
increasing the interaction at a fixed value of the hybridization
or for a fixed interaction and varying the hybridization. In
this case there is no smooth evolution from one regime to
another. In every case we find that increasing hybridization
extends the weak coupling regime and the crossover to strong
coupling occurs for larger values of the interactions. We
also found that to suppress inter-band superconductivity a
smaller value of hybridization is required than in the intra-
band case, showing that the inter-band case is a less stable
form of superconductivity. Rather surprisingly we have found
that for a system of heavy quasi-particles, the crossover for the
strong coupling Bose–Einstein regime occurs very slowly and
requires very strong interactions.

What would be the effect of considering fluctuations
in our two-band problem? First notice that the present
model differs significantly from the usual BCS problem in
one main aspect. In the latter, it is well known that any
interaction induces superconductivity and consequently there
is no superconductor quantum critical point associated with
a normal to superconductor transition [6] at T = 0. As one
considers the effect of temperature in this problem it becomes
imperative to include fluctuations in order to have a correct
description of the strong coupling limit. Otherwise the critical
temperature at which superconductivity vanishes increases

steadily with the coupling strength. This is non-physical and
the unbounded behavior of the critical temperature is in fact
associated with pair dissociation rather than with the onset of
superfluidity of strongly coupled pairs. The correct Tc which
describes the condensation of these pairs is only obtained when
fluctuations are included [3, 6]. In our case, since we are
working at zero temperature the unbounded value of the critical
hybridization with the coupling strength is in fact expected,
since to destroy superfluidity at T = 0 it is necessary to
destroy the bosonic pairs, otherwise the ground state is always
superfluid.
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Rev. B 55 15153
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